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Abstract

The Lattice–Boltzmann method (LBM) is used for the computation of the total hydrodynamic force
acting on a solid sphere that settles in a viscous fluid contained in orthogonal cylindrical or prismatic
enclosures. Creeping flow as well as flows with finite Reynolds numbers are computed. Among the several
geometrical flow domains that are examined are: a sphere in an orthogonal circular cylinder and a sphere in
a prismatic enclosure with various rectangular cross-sections. We also performed calculations on the flow
and the hydrodynamic force developed on the sphere, when it does not move along the line of symmetry of
the enclosure. In the last type of calculations, we have found out that a transverse component of the hy-
drodynamic force develops. In the absence of any rotation of the sphere and for the range of Reynolds
numbers examined here, this force is directed towards the axis of symmetry of the enclosure. � 2002
Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of a particle settling within a three-dimensional enclosure is of particular im-
portance in sedimentation processes, where particles fall freely inside confined spaces, in some
chemical processes, where one or more particles move inside cylindrical or rectangular pipes and
in mechanical processes, where plungers and pistons traverse confined spaces. The first researcher
to consider this problem was Faxen (1922) who used the method of reflections for the movement
of a sphere, under creeping flow conditions. Faxen was able to obtain an asymptotic solution for
the total hydrodynamic force acting on a sphere, which is settling in an orthogonal circular
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cylinder. When the trajectory of the center of the sphere is the centerline of the cylinder, Faxen’s
expression for the hydrodynamic force is given in terms of a ‘‘wall drag multiplier’’, K, as follows:

Kwall �
Fw

6palU0

¼ 1

1� 2:015k þ 2:087k3
; ð1Þ

where k is the ratio of the diameter of the sphere to that of the circular cylinder ðk ¼ d=DÞ, l is the
dynamic viscosity of the fluid, and U0 is the settling velocity (which necessarily has to be low,
because of the creeping flow assumption). The denominator in the first part of the expression is
the Stokes drag force, for a solid sphere moving in an infinite fluid domain (always under creeping
flow conditions). Therefore, the wall drag multiplier is the ratio of the actual drag experienced by
the sphere in the enclosure divided by the drag on a sphere in an infinite fluid. It must be pointed
out that Faxen’s equation is valid only for small values of k ðk6 0:3Þ.

By using the same method of reflections Bohlin (1960) obtained a higher order approximation
for the wall drag multiplier, which is as follows:

Kwall ¼
1

1� 2:01443k þ 2:088777k3 � 6:94813k5 � 1:372k6 þ 3:87k8 � 4:19k10 þ � � �
: ð2Þ

At about the same time, Haberman and Sayre (1958) developed a theoretical method to
compute Kwall for spheres settling in cylinders up to very high values of k. Paine and Scherr (1975)
used this method in order to compute this correction factor and tabulated their results for values
of the diameter ratio in the range 06 k6 0:9. A comparison between Eq. (2) and the exact theory
by Haberman and Sayre (1958) shows that Eq. (2) yields accurate results up to k ¼ 0:6.

Apart form the analytical/computational studies, there are also several experimental studies
pertaining to the settling of a sphere along the centerline of an orthogonal circular cylinder.
Among them, the experimental results by Iwaoka and Ishii (1979), which show good agreement
with the theoretical solution of Faxen and with Eq. (2).

An excellent exposition of the studies on the settling of spheres in enclosures may be found in
the treatise by Happel and Brenner (1986), which devoted an entire chapter to discuss the wall
effects on the motion of a single sphere. They considered creeping as well as inertia flow and
stipulated that the total effect on the hydrodynamic force acting on the sphere is a simple linear
combination of the separate effects of proximity to the outside boundary and inertia. Thus the
total correction factor for the hydrodynamic force acting on a sphere is given by the expression:

K ¼ Kwall þ Kinertia � 1; ð3Þ
where Kwall is the wall effect at creeping flow as defined above and, Kinertia is the additional cor-
rection factor due to the inertia effects of the flow (higher Re). Eq. (3) simply implies that the drag
on a sphere is composed of two additive terms: one term is due to the effect of the cylindrical
boundary and the second due to the effects of the flow inertia. The latter is obtained from one of
the empirical correlations for the drag coefficient, which are widely available in the literature. It
must be pointed out that Eq. (3) is a semi-empirical equation, which emanates from the reduction
of experimental data with k in the range 0.1250–0.3125 and Reynolds numbers in the range 0.1–
40. Despite its simplicity, the application of Eq. (3) yields significant errors, especially at higher
values of the Reynolds numbers.
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The reflection method, which was used in the case of the sphere settling in an orthogonal
circular cylinder, cannot be employed in the case of multiple boundary problems, such as the
problem of a sphere settling in a prism with a rectangular cross-section. Because of this, there are
no known analytical results for the case of a sphere settling in a rectangular prism. However, the
reflection method may be used in the case of a sphere moving between two infinite parallel plates.
Faxen (1922) used this method in order to obtain an asymptotic analytical expression for Kwall,
when the sphere moves very slowly (creeping flow) along the centerline between the two plane
walls. His solution is as follows:

Kwall �
Fw

6palU0

¼ 1

1� 1:004k þ 0:418k3 þ 0:21k4 � 0:169k5 þ � � �
; ð4Þ

where k is now defined as the ratio of the particle diameter and the perpendicular distance between
the two plates ðk ¼ d=W Þ.

Among the experimental studies on prismatic enclosures, one must mention the one by
Miyamura et al. (1981) who studied the settling of spheres in triangular and square prisms as well
as between two parallel plates. In the case of the experiments conducted with the two parallel
plates, they found in general a good agreement between their experimental data and Eq. (4) up to
k ¼ 0:4.

It must be emphasized that all the above studies pertain to the sphere settling along the line of
symmetry (centerline) of the enclosing shape. When the initial position of the sphere is off-center,
the hydrodynamic force has a transverse component (lift force). This transverse force is a result of
the inertia of the fluid and only becomes zero under Stokes (creeping) flow conditions for both
solid and viscous spheres (Leal, 1992; Michaelides and Feng, 1995). Cherukat and McLaughlin
(1994) conducted such a study at finite Reynolds numbers with one plane wall and calculated the
transverse (lift) force on the sphere that settles in the proximity of a vertical plane.

In this study, we employ the Lattice–Boltzmann method (LBM) in three-dimensions in order to
compute the total hydrodynamic force and the wall correction factors for a sphere settling in
orthogonal cylinders and prisms with square and rectangular cross-sections. Comparisons of our
numerical results with the results of known analytical and experimental studies show excellent
agreement, a fact that validates the numerical method used. We determine the inertia effect of the
particle motion by computing the hydrodynamic force at several values of the Reynolds number.
We also use the LBM to compute the trajectories and the total hydrodynamic force (both lift and
drag components) in the case of spheres that move off the lines of symmetry of orthogonal cyl-
inders, prisms and parallel plates.

2. The LBM

The LBM is a relatively new method, developed for computational fluid mechanics. It is ideally
suited for computations on particle–fluid interactions. The LBM originated from the lattice gas
(LG) automata, a discrete particle kinetics method emanating from Boltzmann’s kinetic theory of
gases. The method utilizes a discrete lattice and discrete time. Frisch et al. (1986) are considered
the first to apply this method to CFD and to have recovered a form of the Navier–Stokes
equations from computations based on the LBM. Ladd (1994a,b) has done a great deal of
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pioneering work for the simulation of fluid–particle interactions using the LBM. He provided a
relationship between the exchange of momentum between the fluid and the solid boundary nodes.
In his method, it is assumed that the fluid particles also occupy the volume of the solid particles.
Aidun et al. (1998) made some modifications that decompose the force on the solid particles into a
body force and a hydrodynamic force exerted on the surface. They did not assume that the fluid
particles fill the same space as the solid particles. Behrend (1995) discussed the various treatments
on the solid to fluid boundary including treating the solid–fluid nteractions on the links between
the lattice nodes rather than on the lattice nodes themselves as Ladd proposed. It has been ob-
served that, despite all these modifications, most researchers who apply the LBM prefer to use the
original approach by Ladd (1994a,b). We have also found that for our applications with solid
spheres and irregular particles, the approach by Ladd is the most efficient and provides excellent
results. An excellent review on the subject has been conducted by Chen and Doolen (1998).

In the LBM, the flow domain is divided into a discrete lattice, which spans the whole com-
putational domain. A distribution function, f ðx; tÞ, for the density of the fluid in the lattice node is
used to represent the flow of a real fluid. The Lattice–Boltzmann equation for the distribution
function is given by the following expression:

fiðxþ ei; t þ 1Þ � fiðx; tÞ ¼ � 1

s
fiðx; tÞ
�

� f 0
i ðx; tÞ

�
; ð5Þ

where f ðx; tÞ is the fluid–particle distribution function, f 0ðx; tÞ is the equilibrium distribution
function, s is the relaxation time, and t is the lattice simulation time. The subscript, i, represents
the several directions, towards which the particle may move.

The present study is three-dimensional and we use a so-called ‘‘3d15’’ bit LBM model. Ac-
cording to this model, a given lattice point may move in 15 directions towards its neighboring
lattice points. When this lattice point is considered as the center of a cube, 14 of these directions
are towards the centers of the six cubic faces and towards the eight vertices of the cube. The 15th
direction corresponds to the zero (null) vector, in which case the lattice point does not move. All
the 15 velocity directions ei ði ¼ 0; 1; 2; . . . ; 14Þ are shown in Fig. 1, with i ¼ 0 corresponding to
the zero vector.

In an explicit way, all these vectors ei ði ¼ 0; 1; 2; . . . ; 14Þ correspond to the column vectors of
the following matrix:

E ¼
0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1
0 0 0 1 �1 0 0 1 �1 1 �1 �1 1 �1 1
0 0 0 0 0 1 �1 1 �1 �1 1 1 �1 �1 1

2
4

3
5: ð6Þ

Fig. 1. Velocity vectors for a 3d15 LBM model.
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At each node of the lattice, the density and momentum can be written in terms of the distri-
bution function f ðx; tÞ as follows:

qðx; tÞ ¼
X
i

fiðx; tÞ; ð7Þ

and

qðx; tÞ~uu ¼
X
i

fiðx; tÞei: ð8Þ

Since the lattice formed in this problem has a density and a momentum function, one may obtain
its characteristics as a mass of a viscous fluid, which necessarily obeys the Navier–Stokes equa-
tions. The viscosity of this fluid would be related to the response time of the interactions of the
lattice points. For the computations that follow, it is sufficient to consider a single relaxation
(response) time, s, for these interactions. Given the dimensions of the lattice, the relaxation time s
yields the kinematic viscosity of the fluid as follows (Ladd, 1994a):

m ¼ ð2s � 1Þ=6: ð9Þ
We define the expression for the equilibrium distribution function of the lattice points, f 0ðx; tÞ,

as:

f 0
i x; tð Þ ¼ Ai þ Bi ei � uð Þ þ Ci ei � uð Þ2 þ Di u � uð Þ; ð10Þ

where, Ai, Bi, Ci and Di are constants, derived by the constraints of the constituent (closure)
equations. Because we wish to model flows with finite Reynolds numbers, we adopt the following
values for the 60 model constants that are needed for the calculations:

A0 ¼
1

8
q; B0 ¼ C0 ¼ 0; D0 ¼ � 1

3
q; ð11Þ

Ai ¼
1

8
q; Bi ¼

1

3
q; Ci ¼

1

2
q; Di ¼ � 1

6
q ði ¼ 1; 2; . . . ; 6Þ; ð12Þ

Ai ¼
1

64
q; Bi ¼

1

24
q; Ci ¼

1

16
q; Di ¼ � 1

48
q ði ¼ 7; 8; . . . ; 14Þ: ð13Þ

Under this formulation, in order to simulate a zero-Re (Stokes flow) one may simply set
Ci ¼ Di ¼ 0 ði ¼ 0; 1; 2; . . . ; 14Þ.

In order to simulate the hydrodynamic interactions between the solid particles in a suspension
flow, the LBM must be modified to incorporate the boundary conditions imposed on the fluid by
the solid particles. The surface of the boundary cuts some of the links between the lattice nodes,
and the fluid particles moving along these links interact with the solid surface at boundary nodes,
which are placed halfway along the links. In this case the boundary node, rb, is defined as the
middle of the link. Such boundary nodes approximate the surface of the particles. Obviously, in
order to have a more precise representation of the shape of a particle, a higher number of lattice
units are needed (bigger particle in comparison to the computational domain). The required no-
slip boundary condition on the surface of the moving particles is achieved by the requirement that
the fluid velocity has the same value at the boundary nodes as the particle velocity, ub. Thus, the
particle velocity at a boundary node may be written explicitly as follows:
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ub ¼ U þWb � xð � RÞ; ð14Þ
where U is the particle translational velocity, Wb is the particle rotational velocity, and R is the
position of the center of the particle. To account for the momentum exchange change when ub is
not zero, a collision function is used, which is given by the following expression:

fi0 ðx; tþ þ 1Þ ¼ fiðx; tþÞ � 2Bi ei � Ubð Þ; ð15Þ
where x is the position of the node adjacent to the solid-surface with velocity Ub, tþ is the post-
collision time, which is taken the same as in Ladd (1994a) and i0 denotes the direction, which is
opposite to the incident direction, i (reflection). More details on this part of the method may be
found in Ladd (1994a,b).

Therefore, the hydrodynamic force exerted on the solid particle at the boundary node is

F x

�
þ 1

2
ei; t

	
¼ 2ei fi x; tþð Þ½ � 2Bi Ub � eið Þ�: ð16Þ

It must be pointed out that momentum is exchanged locally between the fluid and the solid
particle, but the combined momentum of the solid and the fluid is conserved globally. The total
force F t and the torque T t on the solid particle can be obtained by summing up all the forces and
torques acting on this particle:

F t ¼
X
i

F x

�
þ 1

2
ei

	
;

T t ¼
X
i

x

�
þ 1

2
ei

	
� F x

�
þ 1

2
ei

	
:

ð17Þ

In the numerical scheme, which is adopted for the solution of the resulting set of equations,
both the translational and rotational velocities are updated at each time step by using the fol-
lowing formulae:

U0ðt þ 1Þ ¼ U0 tð � 1Þ þ 2M�1FðtÞ ð18Þ
and

W ðt þ 1Þ ¼ W tð � 1Þ þ 2I�1 � TðtÞ; ð19Þ
where M and I are the mass (scalar) and inertia (vector) of the particle.

3. Simulation of particle motion in an orthogonal cylinder

The three-dimensional LBM is first used to compute the drag force on a spherical particle
settling in a cylinder. Since the particle is moving relative to the boundary, an exact simulation of
the system with a fixed set of coordinates requires constantly updating the computational domain
or using a very long cylinder in the computational domain to account for the entrance length,
until the sphere reaches its terminal velocity. Instead of this, we have used a coordinate system
fixed on the sphere. Hence, the problem becomes equivalent to that of a cylinder full of fluid with
unidirectional velocity U0 passing over a stationary sphere. The boundary condition at the surface
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of the cylinder becomes one of constant unidirectional velocity, U0. This situation is depicted in
the schematic diagram of Fig. 2. Under these conditions, gravity acts from the right to the left of
the figure. The calculated steady-state hydrodynamic forces on the sphere in the two configura-
tions depicted in the figure are identical.

The 3d15 bit LBM is used in all the simulations. The diameter of the sphere is always kept equal
to at least 18 lattice units or larger. We have found from size validation studies that this minimum
size for the sphere yields results, which are accurate to 1.0%. The moving boundary conditions on
the surface are applied using the ‘‘bounce and back rule’’ (Ladd, 1994b). The outlet boundary
condition in the computational domain is set to be stress free ðdu=dx ¼ 0Þ. Hence, we derived for
the discrete lattice points the condition u½nx� ¼ u½nx� 1�. Furthermore, by using the mass and
momentum conservation equations (7) and (8), we are able to solve for the unknown fluid density
at the outlet boundary, and subsequently apply the domain marching rules.

4. Results and discussions

4.1. A solid sphere in a circular cylinder

The problem of a solid sphere settling axially in a circular cylinder has been well-studied, both
analytically and experimentally. In this study we are deriving the results of this problem in order
to validate the numerical scheme we are using in the LBM. Numerical grids with sizes from
50� 50� 200 to 90� 90� 300 were used in the computations of the total hydrodynamic force
(and, hence, of the wall drag multiplier) depending the diameter ratio of the sphere and the
cylinder. The minimum inlet length is about three times the sphere diameter upstream of the
sphere and the minimum outlet length is about seven times the diameter of the sphere down-
stream. Parametric studies on these dimensions have shown that these inlet and outlet dimensions
are sufficient for the establishment of steady-state conditions at all conditions examined here.

We have compared our results for the drag wall multiplier with the results derived by the
analytical method of Haberman and Sayre (1958) as computed and tabulated by Paine and Scherr
(1975). Table 1 shows this comparison of the wall drag multipliers.

It is apparent that there is a very good agreement between the numerical and the analytical
results, especially at the lower values of k. Our numerical calculations also show that the

Fig. 2. Schematic diagram of a particle settling in a cylinder.

Table 1

Comparison of previous solutions and present numerical results

kð¼ d=DÞ 0.2 0.3 0.4 0.5 0.6 0.7 0.8

K (present) 1.70 2.41 3.68 6.18 11.92 26.88 85.03

K (analytical) 1.68 2.37 3.60 5.96 11.16 25.01 78.52
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computational results at high values of k can be improved by the use of a finer grid in the fluid gap
between the sphere and the enclosure.

Another comparison of the present computational method was accomplished at very low
Reynolds numbers ð0:1 < Re < 4:0Þ. Fig. 3 shows a comparison between the analytical solution at
Stokes flow, the present LBM results, and a set of experimental data at low Reynolds numbers
(Jourdan, 2000). It is obvious that there is very good agreement with all sets of data, a fact that
further validates the numerical scheme used in this work.

By using the LBM in the solution of the problem of a sphere settling in a cylinder, we were able
to compute the wall correction factors for Stokes flow as well as for inertia flows. We have found
out from our computations that, when the diameter ratio, k, is greater than 0.5 the inertia effect is
insignificant compared to the wall effect, for Reynolds numbers up to 20. At values of k, less than
0.5 one has to account for the inertia effect on the correction factor. We have also found out that,
with the grid size and the type of simulation box we chose, the LBM fails to converge for Re > 50.
However, we believe by using a more refined grid, one is able to compute results at higher values
of Re (in this case, the computational time would increase significantly).

Table 2 shows the wall correction factors at different Reynolds numbers. By comparing the
results at finite Re with those of the Stokes solution, we are able to determine the effect of the flow
inertia on the wall multiplier. It is evident from the results of Table 2 that for k ¼ 0:8 and
0 < Re6 20, the inertia effect amounts to less than 5% of the total value of the correction factor.
The corresponding figure at k ¼ 0:6 is about 7%, while at k ¼ 0:4 the inertia accounts for more
than 14% of the value of the correction factor. This indicates that the effect of inertia on the wall
correction factor is very low at high values of the parameter k. The semi-empirical data, calculated
by using Eqs. (2) and (3) with Rowe’s expression (Clift et al., 1978; Michaelides, 1997) for the drag

Fig. 3. Wall correction factors for single solid spheres in a circular cylinder.
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coefficient at higher Re, are also shown in the table. Rowe’s expression for the drag coefficient has
been used in this study for the drag coefficient of a sphere in an infinite fluid domain, because it is
the most frequently used expression in particle flow simulations and it agrees well with experi-
ments in the pertinent range of Reynolds numbers used in this study. This expression is as follows:

Cinertia ¼
24

Re
1



þ 0:15Re0:687
�
: ð20Þ

A glance at Table 2 shows that there is a small discrepancy between the semi-empirical data and
the numerical results obtained by this method. This discrepancy is more pronounced at lower
values of k (at Re ¼ 20, it is about 15% at k ¼ 0:4, but only 10% at k ¼ 0:8). The discrepancy is
most probably due to the fact that the two effects of inertia and of the flow confinement (wall) may
not be always linearly combined as Eq. (3) implies.

4.2. A solid sphere in a rectangular prism

In this section, we apply the LBM to compute the wall and inertia effects on a single rigid sphere
settling in several orthogonal prisms of rectangular cross-sections. Fig. 4 shows the system and the
computed flow velocity field in a rectangular prism with cross-sectional length to width ratio equal
to 2.0 ðL=W ¼ 2Þ and sphere diameter to width ratio k ¼ d=W ¼ 0:5. In this case, we have used
200� 40� 80 lattice units with the diameter of the sphere being equal to 20 lattice points. The
direction of the gravity in Fig. 4 is in the �x direction.

From the outset it must be pointed out that the case of the single-phase fluid flow in a rect-
angular prism is different than that of the flow in a cylinder, because of the secondary flow, which
are developed in a direction perpendicular to the main component of the velocity. This secondary
flow is caused by the corners of the prism and is developed in all types of polygonal prisms. This
phenomenon is well known in the fluid dynamics literature and does not need further elaboration
(Schlichting, 1978). In the case of the flow induced by a falling sphere, one expects to encounter a
similar type of secondary flow, which would develop in the horizontal plane (that is a plane
perpendicular to the direction of gravity) near the corners of the prism. For this reason we have
calculated the secondary flow developed in the horizontal plane through the center of the sphere,
for a sphere settling in orthogonal cylindrical and a square prism. The conditions for the com-
putations are: Re ¼ 0:48 and k ¼ 0:4. We have plotted the results of the computations on a

Table 2

Wall correction factors at different Reynolds numbers

k

0.4 0.6 0.8

Stokes flow Exact solution 3.60 11.86 78.52

Present method 3.68 11.92 85.03

Re ¼ 10 Present method 3.82 12.30 86.23

Semi-empirical 4.37 11.93 79.29

Re ¼ 20 Present method 4.21 12.73 88.88

Semi-empirical 4.83 12.39 79.75
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horizontal plane that passes through the center of the sphere in Fig. 5. It is obvious that the
secondary flow patterns created in the two horizontal planes are markedly different. This implies
that there will be significant differences in the magnitude of the hydrodynamic force exerted on the
sphere. Regarding the last figure, it must be pointed out that the magnitude of the velocity in Fig.
5 is approximately two orders below the magnitude of the settling velocity of the sphere for both
the cylinder and for the square prism.

For the case of a sphere settling in a rectangular prism, there are no analytical solutions
available. The work by Faxen (1922), covers the case of a sphere settling at creeping flow con-
ditions between two infinite parallel plates, which is essentially the case of a sphere settling in a

Fig. 5. Secondary flow created in a cylinder and a square prism.

Fig. 4. A solid sphere in a square cylinder with d=W ¼ 0:5.

488 Z.-G. Feng, E.E. Michaelides / International Journal of Multiphase Flow 28 (2002) 479–496



rectangular prism of infinite length to width ratio. The final result of this study is the asymptotic
equation (4).

Fig. 6 shows the computed wall correction factors with various rectangular shapes. The ex-
perimental data shown are from the study of Miyamura et al. (1981) who presented the wall
correction factors for two ratios of the parameter L=W , namely 1 and 10. Faxen’s asymptotic
solution for the two parallel plates is also plotted in the same figure. It is apparent that this so-
lution is valid up to k ¼ 0:5.

Table 3 shows the detailed results for the correction factors obtained by the LBM for various
orthogonal rectangular prisms and for several values of the parameters d=W and L=W . The same

Table 3

Wall correction factors for various orthogonal rectangular prisms

L=W ¼ 1:0
kð¼ d=W Þ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

K 1.72 2.30 3.18 5.01 8.03 13.98 27.9 61.8

L=W ¼ 1:5
kð¼ d=W Þ 0.3 0.4 0.5 0.6 0.7 0.8

K 1.90 2.47 3.32 4.46 6.11 9.24

L=W ¼ 2:0
kð¼ d=W Þ 0.3 0.4 0.5 0.6 0.7 0.8

K 1.73 2.12 2.67 3.33 4.37 5.76

L=W ¼ 5:0
kð¼ d=W Þ 0.3 0.4 0.5 0.6 0.7 0.8

K 1.53 1.75 2.11 2.48 3.06 3.78

Fig. 6. Wall correction factors for various rectangular cylinders.
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data are also plotted in Fig. 7. The value L=W ¼ 1 represents the case of an orthogonal square
prism. The case of two parallel plates would correspond to the value L=W ! 1. It is evident,
from Table 3, that our numerical results agree very well with the experimental data of Miyamura
et al. (1981) for the case of an orthogonal square prism ðL=W ¼ 1Þ. The results also show (this is
clearer in Fig. 7) that the effect of the parameter L=W on the correction factors is very significant
in the range 1 < L=W < 3 and that this effect diminishes considerably for values L=W > 3. It must
be pointed out, however, that this effect is not negligible, as demonstrated in Fig. 6 by the con-
siderable difference, which is apparent between the curves for L=W ¼ 5 and the experimental data
for L=W ¼ 10. Table 3 and Figs. 6 and 7 show that, while the parameter d=W is the most sig-
nificant factor for the wall correction factors, the distance of the other side boundaries (that is the
parameter L=W ) still plays a significant role in the determination of the total correction factor.

The velocity fields in two vertical cross-sections of the orthogonal prism with L=W ¼ 2:0 are
also shown in Fig. 8. These vertical sections are through the center of the sphere, in the x–z and the
x–y planes (gravity acts in the �x direction). It is observed that the velocity disturbance is es-
sentially confined in the immediate vicinity of the sphere, with very low-level disturbances at
distances further than one diameter.

4.3. Off-center settling of a solid sphere in a cylinder or a rectangular prism

The problems of a single solid sphere settling off the cylinder centerline or off the center plane of
two parallel plates have also been discussed by Happel and Brenner (1986) for the case of creeping
flow. However, it is well known (Leal, 1992; Michaelides, 1997) that any solutions under the
Stokes flow assumption (creeping flow) yields a hydrodynamic force, which is in the direction of

Fig. 7. Wall correction factors vs rectangular shape.
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the flow (drag force only with zero lift). The transverse component of the hydrodynamic force
(lift), which acts laterally and determines the true trajectory of the sphere, only appears in flows
with inertia. Feng et al. (1994) using direct numerical simulations examined numerically this
problem in two-dimensions (cylinder between two infinite plates) and showed that, when the two-
dimensional particle is off-center, there is always a transverse component of the hydrodynamic
force, always acting towards the center. This, combined with the viscosity of the fluid, results in
damped oscillations around the centerline and in the particle’s finally settling along the centerline
of the channel. Feng et al. (1994) also found that when the Reynolds number is very small but
finite and the channel is wide, the particle will simply approach slowly the centerline and then will
settle along this line. However, for higher Reynolds numbers (in this case Re ¼ 3:2) the sphere
would overshoot the centerline and would describe damped oscillations around it.

In this section, we consider the case of a single solid sphere in narrow circular cylinders with
diameter ratio k ¼ d=D ¼ 2=3. The initial position of the center of the sphere is at a distance
y ¼ 0:1D off the cylinder’s axis of symmetry. In this case, we have achieved flows of different
Reynolds numbers (defined with respect to the equilibrium terminal velocity) by varying the fluid
to particle density ratio. Thus, we were able to achieve values of Re in the range 4.0–11.3.

Fig. 9 shows the two components of the total hydrodynamic force for this flow situation,
separated as longitudinal and transverse forces. It is observed that the longitudinal component
(drag force) reaches rather quickly its equilibrium value. The behavior of the transverse com-
ponent of the force depends on the value of Reynolds number: at the low value of Re, (4.0) the
transverse component of the force starts with a very low magnitude, reaches its equilibrium value
(0.0) rather quickly and remains at approximately this value. However, at higher values of Re (7.8
and 11.3), the initial value of the transverse component is higher. As the sphere approaches the
center and then overshoots it, the sign of this component changes and this results in damped
oscillations around the centerline. Finally, the transverse force approaches asymptotically the
value zero.

Fig. 10 shows the trajectories described by the spheres under the three values of the Reynolds
numbers mentioned above. It is apparent that the magnitude of the oscillations around the

Fig. 8. Velocity fields around a solid sphere with L=W ¼ 2:0: (a) cross-section at y ¼ L=2; (b) cross-section at z ¼ W =2 .
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centerline increases with the value of Re. There is a qualitative agreement of these results with
those of the two-dimensional cases examined by Feng et al. (1994). However, we have found that,
in the three-dimensional case, under the same ratio of d=D, the damped oscillations around the

Fig. 9. The drag force and side force on the sphere settling off the centerline in a circular cylinder.

Fig. 10. Settling trajectory of a solid sphere in a circular cylinder at different Reynolds numbers.
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centerline start at higher values of the Reynolds number, which signify that the complete (three-
dimensional) enclosure of the fluid around the sphere has a stabilizing effect on its trajectory.

We have also simulated the settling motion of a solid sphere, starting in an off-center position in
the case of a square rectangular prism at various values of the Reynolds number in the range
4:96 < Re < 34:8 and for a diameter to side ratio d=L equal to 2/3. The trajectories of the sphere in
all of these cases are shown in Fig. 11. Two observations can be made by comparing the results in
Figs. 10 and 11: first, that the oscillations of the sphere around the center of the square prism start
at higher values of Re (than in the case of the cylinders) and second, that the magnitude of the
oscillations is lower for comparable values of Re. Both these observations lead us to the con-
clusion that the more confined space in the circular geometry generates a stronger lateral force on
the sphere. This phenomenon is better observed in the results depicted in Fig. 12, where a com-
parison is made of the trajectories of the sphere inside the circular cylinder and inside the square
prism (the ratio of the dimensions of the sphere to that of the enclosing solid is equal to 2/3 in all
cases). It is apparent that, at similar Reynolds numbers, the lateral force in the case of the circular
cylinder is stronger.

All our simulations, which are at Re < 35 and in the absence of any initial rotation imposed on
the particle, showed that the transverse force is directed towards the axis of symmetry of the
enclosure. Even if the sphere started its motion with an initial finite value of the angular velocity,
at the range of the Reynolds numbers examined here, the angular velocity of the sphere will be
quickly damped to reach the value of zero and the sphere will find its equilibrium position at the
axis of symmetry, independent of the initial position and angular velocity. This is in agreement
with the computations by Zhu (2000) who observed that, for Re ‘‘less than around 30’’, a particle
would migrate towards the axis of symmetry, even when it is rotating at the inception of its

Fig. 11. Trajectory of a solid sphere in a square cylinder, starting at an off-center position.
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motion. Zhu’s computations also showed that at higher values of Re and with an initial rotation,
there is an equilibrium position for the sphere, outside the axis of symmetry, which is dictated by
its initial position and the initial angular velocity. Finally, at higher values of Re (Re > 100) it is
well known that the wake formed at the back of the sphere would influence its position in a
periodic way, a fact that is also in agreement with the computations by Zhu (2000).

5. Conclusions

The three-dimensional LBM has been used to compute the total hydrodynamic force and the
wall correction factors for solid spheres settling in orthogonal cylindrical and prismatic enclo-
sures. The numerical results were validated by comparing the case of a sphere settling in a cylinder
with available analytical and experimental data. The results show that the effects of inertia and
proximity to a wall are not simply to be added. It was also found in the case of cylindrical en-
closures that, when the diameter ratio, k, is greater than 0.5, the inertia effect is insignificant
compared to the wall effect, up to Re ¼ 20. At lower values of the diameter ratio one has to
account for the inertia effect on the correction factor. In the case of the rectangular prisms, the
results also show that the effect of the length to width ratio on the correction factors is very
significant in the range 1 < L=W < 3 and that this effect diminishes considerably for values
L=W > 3, without becoming negligible. When the sphere is released from an off-center position,
the hydrodynamic force has a transverse (lift) as well as a longitudinal (drag) component. In this
case, the longitudinal component reaches rather quickly its equilibrium value. The transverse
component is slower to reach its equilibrium value (which is zero). At the low value of Re (4.0),

Fig. 12. Comparison of trajectories for a particle settling in a square cylinder and circular cylinder.
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the transverse component of the force starts with a very low value, reaches its equilibrium value
and remains at approximately this value. At higher values of Re (7.8 and 11.3), the starting value
of the transverse component is higher and this component exhibits damped oscillations, but its
direction is always towards the axis of symmetry of the enclosure. The trajectory of the sphere in
this case is oscillatory too. By comparing the two-dimensional with the three-dimensional results,
we have found that in the three-dimensional case, under the same ratio of d=D, the damped os-
cillations around the centerline start at higher values of the Reynolds number. This signifies that
the complete (three-dimensional) enclosure of the fluid around the sphere has a stabilizing effect
on its trajectory. Regarding the oscillations of the sphere in cylinders versus prisms with the same
dimensional parameters, we have found that the damped oscillations of the sphere around the
center of the square prism start at higher values of Re and, that the magnitude of the oscillations is
lower for comparable values of Re. Both of these observations lead us to the conclusion that the
damping on the transverse motion of the sphere is higher in the case of the square prism.
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